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　 Frequent appearance of quasi-concave functions in microeconomic theory is the proof of their 

importance, and yet they can be a stumbling block to the rigorous and deep understanding of the theory.  

This may be partly attributed to so many concavity-related concepts and various characterizations.1)  

In particular, strict quasi-concavity and strong quasi-concavity are sometimes confused and treated 

equivalently.  This paper aims to explore the subtle relations among quasi-concavity, strict quasi-

concavity and strong quasi-concavity in a unified manner.

1. Basic facts

　 Let f（x） be a real-valued function defined on a convex subset S of Rn and x＝（x1， x2， …， xn）′ be a 

point in S.2)

Definition 1　f（x） is quasi-concave on S if for all x1 and x2∈S and all α∈［0, 1］

f（αx1＋（1－α）x2）≧min｛ f（x1），f（x2）｝ (1)

Definition 2　f（x） is strictly quasi-concave on S if for all x1≠x2∈S3) and all α∈［0, 1］

f（αx1＋（1－α）x2）＞min｛ f（x1），f（x2）｝ (2)

　 When f（x） is a twice-continuously differentiable function, quasi-concavity can be characterized in 

terms of the leading principal minors of the bordered Hessian matrix.  Let

Dr（x）≡

 0 f1（x） f2（x） …… fr（x）
f1（x） f11（x） f12（x） …… f1r（x）
f2（x） f21（x） f22（x） …… f2r（x）
 …   …   …    …

fr（x） fr1（x） fr2（x） …… frr（x）

where4)

fi（x）≡
∂f（x）
∂xi

，i＝1，2，… r，
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fij（x）≡
∂2f（x）
∂xi∂xi

，i， j＝1， 2，… r．

Theorem 1　If f（x） is a quasi-concave function of class C2 defined on an open convex  set S, then

（－1）r Dr（x）≧0，r＝2，3，…，n，for all x∈S. (3)

 (Proof)  See Arrow and Enthoven (1961) or Kemp and Kimura (1978).

　 Needless to say, condition (3) is trivially satisfied for r＝1.  As for sufficiency, Arrow and Enthoven 

(1961) showed that condition (14) below is sufficient for quasi-concavity, which, in fact, is strong 

enough to guarantee strict quasi-concavity and more.  Before proving this, we give a brief review of 

quadratic forms, which is essential to the subsequent analysis.

2. Definite and semidefinite quadratic forms

　 Consider a quadratic form

Σ
n

i＝1
Σ

n

j＝1
aij hi hj，（aij＝aji） (4)

subject to m linear conditions:

b11 h1＋b12 h2＋…＋b1n hn＝0，

b21 h1＋b22 h2＋…＋b2n hn＝0，

…  (5)

bm1 h1＋bm2 h2＋…＋bmn hn＝0，

where we assume m＜n and

b11 b12 …… b1m

b21 b22 …… b2m

…  …   …

bm1 bm2 …… bmm

≠0. (6)

For the sake of simplicity (4) ～ (6) are rewritten in matrix forms:5)

h′A h,

B h＝0,

｜Bmm｜≠0,

where A＝（aij）, B＝（bij）, h＝（h1， h2，…， hn）′, and Bkl is the matrix formed by the first k rows and the 

first l columns of B.  The associated determinants with this quadratic form are expressed as

Hr≡
  0 Bmr

（Bmr）′ Arr
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＝

0 …… 0 b11 …… b1r

…   …  …   …

0 …… 0 bm1 …… bmr

b11 …… bm1 a11 …… a1r

…   …  …   …

b1r …… bmr ar1 …… arr

，r＝1，2，…，n． (7)

Furthermore, let π denotes a permutation of ｛1, 2, …, n ｝ and Aπ denote the matrix obtained from 

A after performing the permutation π on its rows and columns.  Similarly, let Bπ denote the matrix 

obtained from B after performing the permutation π on its columns.  Thus, for example, Aπ
rr is the 

matrix formed by the first r rows and the first r columns of Aπ.  Bπ
mr is similarly interpreted.  When 

with permutationπ , determinants (7) are rewritten as

H
~

r≡
  0 Bπ

mr

（Bπ
mr）′ Aπ

rr

，r＝1，2，…，n．

Theorem 2　Let ｜Bmm｜≠0.

(1) h′A h＜0 for all h∈｛h∈Rn｜B h＝0，h≠0｝ if and only if

（－1）r Hr＞0，r＝m＋1，…， n， (8)

(2) h′A h≦0 for all h∈｛h∈Rn｜B h＝0｝ if and only if

（－1）r H
~

r≧0，r＝m＋1，…，n，for all π. (9)

(Proof)  See Debreu (1952).6)

　 The relation between negative definiteness and negative semidefiniteness (that is, when a negative 

semidefinite matrix becomes negative definite) is given by the following theorem, which is rarely seen 

in the economic literature.7)

Theorem 3　Let ｜Bmm｜≠0 and h′A h≦0 for all h∈｛h∈Rn｜B h＝0｝.  Then h′A h＜0 for all h∈｛h∈

Rn｜B h＝0，h≠0｝ if and only if

Hn＝
0 B
B′ A

≠0. (10)

(Proof)  Sufficiency  Suppose h′A h＝0 for some h≠0.  Then since such h attains a maximum of 

the quadratic form under the linear constraints which are linearly independent, there exist a set of 

multipliers, λ＝（λ1，λ2，…，λm）′, such that

2A h＋B′λ＝0

B h＝0．
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These equations can be rewritten in a matrix form as

0 B

B′ A

（1/2）λ

h
＝0, (11)

which, in consideration of h≠0, implies that the coefficient matrix of (11) is singular.  This contradicts 

the assumption of (10).

Necessity  Suppose the determinant (10) is zero.  Then there exist vectors h∈Rn and λ∈Rm such that

（h′，λ′）≠0′

and

0 B

B′ A

λ

h
＝0,

that is,

B h＝0 (12)

B′λ＋A h＝0. (13)

If h＝0, then B′λ＝0, which implies λ＝0 since the linear constraints are independent by the 

assumption that ｜Bmm｜≠0.  Therefore, h≠0.  From (12) and (13) we have

h′A h＝－h′B′λ＝0

This contradicts the assumption that A is negative definite under the condition B h＝0. Q. E. D.

Now, we are ready to prove the following theorem.

Theorem 4　Let f（x） be a function of class C2 defined on an open convex set S.  If

（－1）r Dr（x）＞0，r＝1，2，…，n，for all x∈S, (14)

then f（x） is strictly quasi-concave on S.

(Proof)  Since it is already proved by Arrow and Enthoven (1961) that (14) is sufficient for f（x） to 

be quasi-concave, we have only to induce contradiction by assuming that f（x） is not strictly quasi-

concave.  Suppose f（x） is quasi-concave but not in the strict sense.  We can find two distinct points x1 

and x2∈S （let f（x1）≧f（x2）） such that there exists α̃∈（0，1） for which

F（α̃）≡f（α̃x1＋（1－α̃）x2）＝ f（x2） (15)

and

F（α）≧ f（x2）, α∈［0, 1］.
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As can be seen from Figure 1, α̃ achieves a minimum.  Hence we have the following conditions:

dF（α̃）

dα ＝∇f（α̃x1＋（1－α̃）x2）（x1－x2）＝0 (16)

and

d2F（α̃）

dα2 ＝（x1－x2）′∇
2 f（α̃x1＋（1－α̃）x2）（x1－x2）≧0, (17)

where

∇f（x）≡（ f1（x）， f2（x），…， fn（x））

and

∇2f（x）≡

f11（x） f12（x） …… f1n（x）
f21（x） f22（x） …… f2n（x）
 …   …    …

fn1（x） fn2（x） …… fnn（x）

.

Note that the assumption of f1（x）≠0 is concealed in (14).  Then according to Theorem 2, condition (14) 

implies that the quadratic form in (17) must be negative subject to the linear constraint (16).  This is a 

contradiction. Q. E. D.

3. Katzner’s example

　 It is important to note that the converse of Theorem 4 does not necessarily hold.  In other words, 

even if we limit f（x） to be strictly quasi-concave in Theorem 1, we cannot delete equality from 

condition (3).  Although this is a case of a strictly concave function, it may be of some help for the 

understanding of this point to cite an example of y＝－x4.  In this case, y is strictly concave in x, but 

Figure 1　Behavior of F（α）
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d2y/dx2＜0 does not hold at x＝0.  With this in mind, it is recognized that an indifference curve y＝y（x，u） 

derived from a strictly quasi-concave function u＝f（x，y） is indeed strictly convex in x and nevertheless 

d2y/dx2＝0 may happen on a nowhere dense subset of R.  A good example given by Katzner (1970) is 

examined below. 8)

　 Consider the utility function defined on the positive orthant by

f（x，y）＝x3y＋xy3. (18)

An indifference curve for (18) is given by

x3y＋xy3＝a

for a certain constant a＞0.  To grasp a clear image of this curve, we rotate the axis  x―O―y by （－45°） 

and express the new one by X―O―Y.  Then using the rotation formula

x＝X cos（－45°）－Y sin（－45°）

and

y＝X sin（－45°）＋Y cos（－45°）,

we obtain

Y4＝X4＋β,

where β＝2a.  As can be seen from Figure 2, the indifference curve Y＝（X4＋β）1/4 is strictly convex in 

X, and hence (18) is a strictly quasi-concave function.  The bordered Hessian can be easily calculated 

as

D2（x）≡
　    0 y（3x2＋y2） x（x2＋3y2）

y（3x2＋y2） 　  6xy 3（x2＋y2）

x（x2＋3y2） 3（x2＋y2） 　 6xy
.

Hence D2（x） calculated along the line y＝x is zero, which corresponds to the fact that d2Y/dX2＝0 along 

the Y-axis in the new coordinate system.

　 The geometrical meaning of nonvanishing Bordered Hessian is clarified in terms of curvature of a 

curve.  Curvature is a measure of the rapidity with which curves change directions.9)  When a curve is 

given in the form y＝f（x）, its curvature κ at （x, y） is calculated as

κ≡
f″（x）

1＋（ f′（x））
3
2

.

If f″（x）＝0, the curvature is also zero, which is exactly the case with Katzner’s example.  Obviously 

nonzero curvature implies that the marginal rate substitution between any two goods is strictly 

diminishing.
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4. Strong quasi-concavity

　 To avoid the possibility of Dr（x）＝0 for a strictly quasi-concave function, we need a stronger 

concept of quasi-concavity than that of strict quasi-concavity à la Barten and Böhm (1982).10)

Definition 3　Let f（x） be a function of C2 class defined on an open convex set S.  f（x） is strongly 

quasi-concave if11)

h′∇2 f（x）h＜0 for all x∈S and h∈｛h∈Rn｜∇f（x）h＝0，h≠0｝. (19)

　 As can be expected from the definition, strong quasi-concavity implies strict quasi-concavity.

Theorem 5　Let f（x） be a function of class C2 defined on an open convex set S.  If f（x） is strongly 

quasi-concave, then f（x） is strictly quasi-concave as well.

(Proof)  Suppose f（x） is not strictly quasi-concave.  Then we can find two distinct points x1 and x2∈S

（let f（x1）≧f（x2）） such that there exists α′∈（0，1） for which

F（α′）≦F（0）,

where F（α） is defined by (15).  If F（α′）＜F（0）, there must exist α̃∈（0，1） such that F（α̃） is a 

minimum.  If F（α）≧F（0） for all α∈［0, 1］, F（α′） is also a minimum.  Thus in either case, there 

exists α̃∈（0，1） which achieves a minimum of F（α）.  This requires conditions (16) and (17), which 

contradicts (19). Q. E. D.

Figure 2　Illustration of Katzner’s Example
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　 Now letting A＝∇2f（x0） and B＝∇f（x0） in Theorem 2 and Theorem 3, we know that quasi-

concavity of f（x） is closely related to negative definiteness (or semidefiniteness) of the quadratic form 

determined by its Hessian matrix under the linear condition which is also related to the hyperplane 

tangent to the level set ｛x∈Rn｜f（x）≧ f（x0）｝.12)  Such relation can be compactly summarized by the 

following theorem.

Theorem 6　Let f（x） be a function of class C2 defined on an open convex set S and ∇f（x）≠0 for all 

x∈S.  Then f（x） is quasi-concave if and only if

h′∇2 f（x）h≦0 for all x∈S and h∈｛h∈Rn｜∇f（x）h＝0｝. (20)

(Proof)  See Otani (1983).

　 In this theorem, the condition “∇f（x）≠0 for all x∈S” cannot be dropped, in particular, for the 

sufficiency part.13）  For example, consider a strictly convex function y＝x4.  Since condition (20) is 

trivially satisfied by x＝0, we check this condition for x≠0.  Then ∇f（x）h＝0 holds only at h＝0, 

where h′∇2 f（x）h≦0 is satisfied.  But this does not imply that y＝x4 is quasi-concave.

From Definition 3 and Theorem 2, we obtain the following theorem.

Theorem 7　Let f（x） be a function of class C2 defined on an open convex set S and f1（x）≠0 for all 

x∈S.  Then f（x） is strongly quasi-concave if and only if

（－1）r Dr（x）＞0，r＝2，3，…，n，for all x∈S. (21)

　 Since the condition f1（x）≠0 can be squeezed into (21), condition (14) in Theorem 4 is, in fact, 

strong enough to imply strong quasi-concavity of f（x）.

　 The following theorem is a generalized version of Theorem 11.2 of Barten and Böhm (1982), but 

our proof is much simpler.

Theorem 8　Let f（x） be a quasi-concave function of class C2 defined on an open convex set S and 

∇f（x）≠0 for all x∈S.  Then f（x） is strongly quasi-concave if and only if

Dn（x）≠0 for all x∈S. (22)

(Proof) Sufficiency  If f1（x）≠0 for all x∈S, then by Theorem 6 quasi-concavity of f（x） is equivalent 

to condition (20), which, in consideration of Theorem 3 and condition (22), is equivalent to (19).  If 

f1（x）＝0 for some x∈S, we have fi（x）≠0 for at least one i∈｛2，3，…，n｝ since ∇f（x）≠0 for all x∈

S.  Hence we can choose an appropriate permutation π (i.e. renumbering of variables)  so that the first 

element of （∇f（x））π is not zero.  Then we have
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h′（∇2 f（x））πh≦0 for all x∈S and h∈｛h∈Rn｜（∇f（x））πh＝0｝,

and this implies

h′（∇2f（x））πh＜0 for all x∈S and h∈｛h∈Rn｜（∇f（x））πh＝0，h≠0｝,

if the associated bordered Hessian matrix is nonsingular.  Since permutation π does not change the 

value of the bordered Hessian determinant, condition (22) is sufficient to imply strong quasi-concavity 

of f（x）.

 Necessity  Since ∇f（x）≠0 for all x∈S, quasi-concavity of f（x） implies condition （20） by Theorem 

6. We can safely assume f1（x）≠0 for all x∈S with renumbering of variables, if necessary, as we did 

above. Hence strong quasi-concavity of f（x） implies condition （22） by Theorem 3. Q. E. D.

　 In fact, we can omit the regularity condition “∇f（x）≠0 for all x∈S” when applying the sufficiency 

part of Theorem 8, for condition （22） itself implies this condition. Similarly, we can also omit the 

regularity condition “f1（x）≠0 for all x∈S” when applying the sufficiency part of Theorem 3 to relate 

condition （20） to condition （19）, for condition （22） permit us to safely assume f1（x）≠0 for all x∈S 

with renumbering of variables, if necessary.

　 Finally, Theorem 1 can be generalized as follows.

Theorem 9　Let f（x） be a function of class C2 defined on an open convex set S and ∇f（x）≠0 for all 

x∈S.  Then f（x） is quasi-concave if and only if

（－1）r
　     0 （∇f（x））πr

（（∇f（x））πr）′ （∇2f（x））πrr

≧0，r＝2，3，…，n，for all x∈S and any π. (23)

(Proof)  By Theorem 6, quasi-concavity of f（x） is equivalent to condition (20), which, in consideration 

of Theorem 2, is equivalent to condition (23). 14) Q. E. D.

5. Conclusion

　 From the above theorems we can indicate the relations among various characterizations of quasi- 

concavity as in Figure 3.15)  In this figure, an arrow should be read as “implies”and the determinant in 

(23) is denoted by Dπ
r（x）.



― 10 ―

名古屋学院大学論集

F
ig

ur
e 

3　
R

el
at

io
ns

 a
m

on
g 

Va
ri

ou
s 

C
ha

ra
ct

er
iz

at
io

ns
 o

f Q
ua

si
-C

on
ca

vi
ty



Strict and Strong Quasi-Concavity

― 11 ―

Notes

1 ） For general discussion on quasi-concavity, see Diewert et al. (1981), Simon and Blume (1994) and Takayama (1994).

2 ） A dash (´) indicates transposition of vectors and matrices.

3 ） x1≠x2∈S should be understood as x1∈S, x2∈S and x1≠x2.

4 ） By the assumption that f（x） is of class C2,

fij（x）＝fji（x） for any i and j.

5 ） 0 stands for a vector or a matrix whose elements are all zeros. Needless to say, A is a symmetric matrix.

6 ） The necessary and sufficient conditions for A to be positive definite (positive semidefinite) are as follows:

（1）  h′A h＞0 for all h∈｛h∈Rn｜B h＝0，h≠0｝ if and only if

（－1）mHr＞0，r＝m＋1，…，n，

（2）  h′A h≧0 for all h∈｛h∈Rn｜B h＝0｝ if and only if

（－1）mH
~

r≧0，r＝m＋1，…，n，and for all π.

7 ） Theorem 3 is essentially the same as Theorem 9.4 of Hestenes (1966).

8 ） See Katzner (1970) p. 54.

9 ） See Protter (1988) p. 503.

10） See Barten and Böhm (1982), p. 405.

11） Incidentally, if ∇f（x）＝0, condition (19) implies strict concavity of f（x） in the neighborhood of x since its Hessian 

matrix is positive definite there.

12） This tangent hyperplane is expressed as

∇f（x0）（x－x0）＝0.

13）The regularity condition “ f1（x）≠0 for all x∈S” is not used for the proof of the necessity part.

14） Since ∇f（x）≠0 for all x∈S, we can safely assume f1（x）≠0 for all x∈S by renumbering the variables if necessary.

15） Figure 3 is supplemented with the following obvious relations:

① A strictly quasi-concave function is also quasi-concave.

② A positive definite quadratic form is also positive semidefinite.
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